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Objectives:
▪ Construct a computationally efficient multiscale modeling framework for CNT-enhanced nanocomposites

▪ Understand material response of CNT nanocomposites from the molecular level to the continuum scale

▪ Integrate damage initiation and evolution mechanisms caused by molecular events to system level information
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Motivation:

• Global constitutive response affected by properties at nanoscale

- Distribution of nanoparticles, cross-linking degree, local interfaces

• Capturing damage evolution requires information exchange through 

length scales

• Computational traceability requires a multiscale framework
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Different models required for typical subregions

Matrix:

 Resin, hardener 

& CNT

 Requires 

isotropic 

representation

Interface:

 CNT-dispersed matrix 

& fiber

 Requires anisotropic 

representation

Fiber:

 Unidirectional 

carbon fibers

 Requires orthotropic 

representation
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Meso & Macroscale

MD simulation

 SWNT with terminal 

hydrogen atoms – thermally 

stable

 C – C bonds are sp2, C – H 

bonds are sp3

 Chirality indices and aspect 

ratio determine the 

dimensions

 Classical force fields 

selected - OPLS force field 

for CNT; MMFF for polymer

 Epoxy-based polymers are 

amorphous
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(g/mol)

Chemical 

Formula

DGEBF 313 C19H20O4

DETA 103 C4H13O6
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Evaluating most likely cross-linking degree
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Epoxy with 5% wt. CNT: 34 .14%

• Harmonic (classical) bond potential in MD valid only for 

processes occurring about equilibrium bond length (e.g. 

cross-link formation); does not simulate bond dissipation

• Accurate simulation requires a combination of classical 

and bond-order based force fields

A framework to enhance existing knowledge-base on material properties and 

response of complex CNT-enhanced composites; help promote use of nanomaterials 

Correlation: Crosslinking Degree & CNT 
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• Interference: Inclusion of 

CNT molecules in RUC 

interferes with crosslinks 

formed between resin & 

hardener molecules

• Clustering: With higher 

number of CNT molecules in 

RUC, intermolecular 

attractive force draws CNTs 

to RUC center 

 RUCs contain different CNT weight fractions; distribution 

of CNTs in the simulation volume is random

 Investigated resulting CL degree from the numerical 

curing process for a constant value of cut-off distance    

(4.5 Å)

Interference

Clustering

Percolation 

Threshold

Effect of CNT Weight Fraction, CNT 

Distribution
 Each data point obtained as an average from multiple MD 

simulations

 Improvement in mechanical properties of nanopolymer observed 

until CNT weight fraction of ~ 7%

 Properties remain mostly invariant at higher weight fractions

 CNT clustering effects could result in inefficient load transfer 

through the matrix
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 Deformation tests 

stretch bonds & 

require recalculation 

of bond order at 

each time step

 Bond order-based 

force field captures 

bond dissociation as 

a function of bond 

length

 Strain rate: 1014 s-1 used to 

overcome thermal vibrations

 Successfully captures bond 

scission

 Note that strains of the unit 

cell are not continuum strains
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Strain rate: 1*10
14

 

 

CNT wf = 2%

CNT wf = 3%

CNT wf = 4%

CNT wf = 5%

 Fiber outer surface modeled with irregularly stacked graphene 

layers

 Voids induced by selectively removing carbon atoms; 

hydrogenating active sites by stochastic cutoff based bond 

formation

 Graphene with induced voids simulates surface roughness,  

physical mechanical entanglement & chemical interactions from 

covalent bonds

 Polymer network chains penetrate defect induced graphene 

layers

Fiber Rotation: 

Trapezoidal cohesive law
δ2c

Fiber Pullout: Trapezoidal 

cohesive law

δ3c

Matrix Debond: Bimodal 

cohesive law


