Atomistically Driven Computational Framework to Predict the Behavior of CNT-Embedded Nanocomposites

Nithya Subramanian, Aditi Chattopadhyay

School for Engineering of Matter, Transport and Energy

Research supported by Office of Naval Research, Program Manager: William Nickerson

Objectives:

- Construct a computationally efficient multiscale modeling framework for CNT-enhanced nanocomposites
- Understand material response of CNT nanocomposites from the molecular level to the continuum scale
- Integrate damage initiation and evolution mechanisms caused by molecular events to system level information

Multiscale Modeling Motivation Motivation: Global constitutive response affected by properties at nanoscale - Distribution of nanoparticles, cross-linking degree, local interfaces Capturing damage evolution requires information exchange through length scales Computational traceability requires a multiscale framework **Structural Modeling** Molecular Level **Constituent Level** Fiber Tow Level Modeling Modeling Modeling Mesoscale A framework to enhance existing knowledge-base on material properties and response of complex CNT-enhanced composites; help promote use of nanomaterials

CNT & Polymer Modeling

- SWNT with terminal hydrogen atoms – thermally stable
- C C bonds are sp2, C H bonds are sp3
- Chirality indices and aspect ratio determine the dimensions
- Classical force fields selected - OPLS force field for CNT; MMFF for polymer

103

 $C_4H_{13}O_6$

Cross-linking Degree Estimation

Correlation: Crosslinking Degree & CNT Weight Fraction

- RUCs contain different CNT weight fractions; distribution of CNTs in the simulation volume is random
- Investigated resulting CL degree from the numerical curing process for a constant value of cut-off distance (4.5 Å)

 Interference: Inclusion of CNT molecules in RUC interferes with crosslinks formed between resin & hardener molecules
 Clustering: With higher number of CNT molecules in RUC, intermolecular attractive force draws CNTs to RUC center

MATERIALS & SYSTEMS CENTER

Effect of CNT Weight Fraction, CNT Distribution

- Each data point obtained as an average from multiple MD simulations
- Improvement in mechanical properties of nanopolymer observed until CNT weight fraction of ~ 7%

DETA

- Properties remain mostly invariant at higher weight fractions
 CNT clustering effects could result in inefficient load transfer
- CNT clustering effects could result in inefficient load transfer through the matrix

Damage Initiation Modeling

- Harmonic (classical) bond potential in MD valid only for processes occurring about equilibrium bond length (e.g. cross-link formation); does not simulate bond dissipation
- Accurate simulation requires <u>a combination of classical</u> and bond-order based force fields

Deformation tests stretch bonds & require recalculation of bond order at each time step
 Bond order-based force field captures bond dissociation as a function of bond length

Simulation of Bond Scission Events

Nanoscale Fiber/Matrix Interphase

- Fiber outer surface modeled with irregularly stacked graphene layers
- Voids induced by selectively removing carbon atoms;
 hydrogenating active sites by stochastic cutoff based bond formation
- Graphene with induced voids simulates surface roughness, physical mechanical entanglement & chemical interactions from covalent bonds
- Polymer network chains penetrate defect induced graphene

Interphase Modeling and Modes of Loading

Cohesive Behavior and Failure Modes

ADAPTIVE INTELLIGENT
MATERIALS & SYSTEMS CENTER