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Objectives:
▪ Develop stochastic multiscale model for CFRPs and CNT/CFRP structures which utilize nanoscale information

▪ Investigate nonlinear, multifunctional, and causal effects of damage initiation and propagation in advanced composites

▪ Utilize low fidelity damage models for macroscale integration and analysis of composite structures 
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Motivation

 Advanced composite structures present many mechanical/multifunctional 

benefits

 Nanocomposites with CNTs: Stiff and strong, ideal filler material

 Lack of accurate predictive models for material engineering or structural 

analysis

 Experimental trial and error is too expensive and time consuming

 Large divide between theory and experiments
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Epoxy with 5% CNT: 31.16%
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• Two-parameter response surface

created from MD Data

• Material properties of epoxy sampled

using response surface

• Gaussian sampling

Bridging Elastic information
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Distribution of Properties

 Obtained a PDF of elastic constants

 Comparisons with experiments:

 0.3% error in mean of E1

 3.1% error in standard deviation of E1

 2.3% error in mean of E2

 10.6% error in standard deviation of E2

MM

Bond breakage

Information Transfer

Nonlinear simulation

Linear simulation

Molecular level modeling

CDM

CDM is thermodynamically 
consistent & computationally 
efficient

Damage evolution law based on 
atomistic damage & vary by 
crosslinking degree

Conversion degree variation

Damage evolution for matrix phase

Micro level modeling

Rai et al., J of Comp (2016)

Polymer Damage Model Validation 

• Various validation strategies used:

• Benchmarking with 
established models

• Experimental approaches

• Comparing local stress fields 

Microstructure Generation

 All three constituents 

generated explicitly

 Microfiber

 Polymer

 CNTs
Polymer

MicrofibersCNTS

Stress Field in Vicinity of 

Nanofillers

Two softening phases observed in MD 
Two softening phases observed in local FE

Microstructure Investigations

 Microstructures with 0.1% wf

CNT generated

 Tested in transverse direction

 Elastic and damage response 

was studied

Radially grown configuration 
shows better damage 

behavior

Radially grownRandomly dispersed

Randomly dispersed 
configuration shows slightly 

higher elastic behavior

Low-fidelity Damage Model for Matrix
• Represent matrix response 

using Schapery potential 

theory

• Straight forward for isotropic 

damage since single ISV 

required

• Orthotropic response 

requires modified definition 

of the ISVs

• One ISV for strain in each 

direction

• ISV as a function of binary 

parameters activated on 

existence of strain

• Elastic constants are a 

function of ISVs
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Response Distribution

 Two sources of variability:

 Volume fraction

 Matrix properties

 1000 simulations, randomly 

sampled

 Processing time: 30-45 

minutes

 Transverse loading – tight 

response, failure strain 

change

 Shear loading – large spread; 

higher non-linearity for stiff 

response

 Average response 

discouraged for design

Integration to the Macroscale

 Macroscale model integration for structural analysis

 Structural composite bonded joints as case study

 Limited use due to lack of appropriate analysis methods 

and damage initiation, progression and failure criteria

 Introduction of bolts leading to overdesign

 Unoptimized designs

 Can be used more effectively with comprehensive models 

to predict damage and failure
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Methodology

 Structural Analysis -> FE

 FE integration point - > Microstructure representation

 Microstructure Analysis -> MoC Micromechanics

 Matrix -> Low fidelity damage models

 Matrix analysis -> atomistically informed damage model


