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ABSTRACT 
 
A reliable prognostics framework is essential to prevent catastrophic failure of bridges due to scour. In the U.S., scour 
accounts for almost 60% of bridge failures. Currently available techniques in the literature for predicting scour are mostly 
based on empirical equations and deterministic regression models, like Neural Networks and Support Vector Machines, 
and do not predict the evolution of scour over time. In this paper, we will discuss a Gaussian process model, which 
includes Bayesian uncertainty for prediction of time-dependent scour evolution. We will validate the model on the 
experimental data conducted in four different flumes in different conditions. The robustness of the algorithm will also be 
demonstrated under different scenarios, like lack of training data and equilibrium scour conditions. The results indicate 
that the algorithm is able to predict the scour evolution with an error of less than 20% for most of the time, and 5% or less 
given enough training data. 
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1. INTRODUCTION 
 
Many studies1-6 have been carried out in order to understand the mechanism of scour around bridge piers. As there are 
many parameters that influence the scour evolution, it is very difficult to formulate a mathematical model. Due to the 
complex nature of the scouring process a general theory for predicting the scour was not achieved.  
 
Recently, soft computing techniques like neural networks are being used for the prediction of scour7-10. Azamathulla et 
al.8 presented the use of alternative neural networks to predict the scour below spillways. Bateni et al.9 presented the use 
of Bayesian neural networks to predict the time-dependent scour in which both the time-dependent and equilibrium scour 
depth were calculated. These studies suggest that neural networks give better results compared to empirical equations11-12. 
A neural network (NN) model needs to set up different learning parameters, number of hidden layers and the number of 
nodes in a particular hidden layer. Also, large training sets are required to find the optimal values for the above 
parameters, and the NN model suffers from the problem of local minima. Pal et al.13 developed a support vector 
regression based model for predicting the scour using field data. Though this model gives good predictions compared to 
the other methods, it does not predict the time-dependent scour.  
 
There are only a few time-dependent scour models in the literature5,9,14. Hong et al.14 developed a support vector 
regression based approach to predict the time-dependent scour under different sediment conditions. He was able to 
capture the physics of the scouring process through considering the parameters like actual and critical Froude number. 
Though this approach works well for the laboratory conditions, it is difficult to determine the model parameters during 
live bed scour where turbidity plays an important role.  
 
All the methods described above are deterministic regression methods, and do not provide the confidence with which the 
predictions are made under certain conditions. The goal of this paper is to introduce the use of Gaussian process (GP), 
which is a probabilistic data driven approach with Bayesian uncertainty for predicting the time-dependent scour. GP has 
been successfully used for the structural health monitoring of aerospace components15,16. This paper shows the 
applicability of the GP algorithm for the prediction of the temporal scour  



 
2. PARAMETER SELECTION AND DATA SETS 

 
The scour depth (d) depends on various parameters such as velocity of the flow (V), flow depth (h), skew (Sk), pier 
diameter (D), median particle size (d50) and gradation (σ)12. The underlying relationship can be written in the form:  
 
d(t) = f (h,V ,Sk ,D,d50,σ ,t)                                                        
(1) 
 
where t is the time. Parameter t facilitates the prediction of scour evolution.  The type of evolution of the scour changes 
with different characteristics of the input parameters. The parameters such as D, Ps, Sk, d50, and σ will remain same for 
any particular location in the streambed (near the bridge pier). Hence, in order to study the temporal evolution of the 
scour for a particular bridge as a function of all the above parameters, the model can be simplified by removing the 
parameters that remain almost constant over the given period of time. This gives a simple yet robust model for predicting 
the time-dependent scour depth, which will be discussed in the subsequent section. The simplified relationship can be 
written for the scour depth as a function of time in the form: 
 
d(t) = f (h,V ,t) ,                                               
(2) 
 
In this study, the dataset17 containing 84 data points from experiments conducted in four different flumes was used. The 
characteristics of the dataset are shown in Table 1. The minimum value of the parameter is xmin, maximum xmax, mean 
xmean, standard deviation xstd, variation coefficient Cvx, and skewness coefficient Sx. 
 
     Table 1. Characteristics of the data set17 
 
Variables xmin xmax xmean xstd Cvx Sx 
D (mm) 16 200 85.0075 48.2872 0.568 0.7229 
d50 (mm) 0.8 7.8 1.9261 1.7819 0.9252 1.9797 
h (mm) 20 600 269.7262 210.4478 0.7802 0.7385 
V (m/s) 0.165 1.208 0.4251 0.2698 0.6346 1.3352 
t (min) 200 15000 3909.3 3096.9 0.7922 1.9316 
d (mm) 4 318 122.75 88.744 0.723 0.5961 
 

3. GAUSSIAN PROCESS PROGNOSIS MODEL 
 
A Gaussian Process (GP)18 model, which includes Bayesian uncertainty, is used for the prediction of the time-dependent 
scour depth. The scour depth is assumed to be a random variable, which follows the Gaussian distribution. The GP is a 
combination of such Gaussian distributions over the prediction time into the future. GP makes predictions by projecting 
the input space to the output space, by inferring their underlying non-linear relationship. Once the algorithm is trained 
with the input and output parameters, it can make predictions of the output parameter for unknown or new sets of input 
parameters. The input space and output space for the GP in the current prediction problem are shown below in the form of 
matrices.  
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The posterior distribution over the predicted scour depth at time “t” (dt) can be written as16: 

f (dt |D,Kt (xi , x j ),θ ) =
1
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(3) 
where Z is a normalizing constant, D = {xi ,di}i=1

t  is the training set, K is the kernel matrix, θ is the set of hyper-

parameters, µdt
 is the mean, and  σ dt

2  is the variance of the distribution, which is related to the error in the prediction. 
The error is attributed to the training of GP under varying conditions. The kernel function transforms the non-linear 
parameters to a high dimensional space where they are linearly separable. Different kernel functions18 such as squared 
exponential, rational quadratic kernels were examined to determine the most suitable kernel for scour. A squared 
exponential kernel, which is a measure of the squared distance between the parameters, was found to work well.  
 
The squared exponential kernel is expressed as18:  
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(4) 
whereθ1 and θ2  are the hyper-parameters which govern the accuracy of the predicted values. The hyper-parameters are 
first initialized to a reasonable value and their optimum value is found by minimizing the negative log marginal likelihood 
(L) given by18: 
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2
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The kernel function is first evaluated using the initialized hyper-parameters. The optimal values for the hyper-parameters 
are found by using the conjugate gradient descent optimization algorithm by considering “L” as the objective function to 
be minimized. The training set is updated progressively within time, as new data is available, to (i) improve the accuracy 
of prediction; and (ii) ensure that the model will be able to capture global and local variations in the parameters. 
 

4. RESULTS AND DISCUSSION 
 
The data for training was chosen such that the evolution of the scour as a function of time could be predicted. All the data 
was normalized before the analysis to ensure that all the parameters are equally weighted. As the total data is normalized, 
the hyper-parameters in equation (4) are initialized to θ1  = 0.1, θ2  = 0.1. Figure 1 shows the plot of the optimization of 
“L”; as the number of iterations increase the hyper-parameters reach their optimal values, thus reducing the value of “L”. 
Figure 1 shows the value of “L” converging to the optimum value after 30 iterations. 

 
Figure 1. Optimization of the negative log marginal likelihood (L) 

 
Figure 2 shows the scour depth as a function of time. Three different cases were chosen to show the adaptability and 
robustness of the developed algorithm. In the first case, the data about an abrupt change in the scour depth was included. 
The second case demonstrates the increasing accuracy of the algorithm with increasing training data. The third case 
demonstrates the predictive capability of the algorithm under equilibrium scour conditions. Figure 3 shows the error in 
prediction of the time-dependent scour depth. The grey region in Figure 2 is the 95% confidence interval (2 standard 
deviations) for the prediction. The algorithm is able to predict the scour depth accurately within an error of less than 5% 
for almost the entire scour evolution regime. The error of 8% at the final point of prediction is the result of limited 
training data set. However, as more data becomes available about the change, the algorithm will predict the scour depth 
accurately. Figure 4 (case 2) shows this phenomenon, where the model is updated dynamically to get the accurate results. 
The first prediction in Figure 4 is based on three training data points leading to a lower confidence level; however, as the 
training set is updated after every iteration, the error (Figure 5) reduces significantly.  The above results show the 
capability of the algorithm to adapt as it gets more training data.  
 



 
         Figure 2. Scour depth as a function of time (Case1)            Figure 3. Error in prediction of scour depth (Case 1)  

 
                         Figure 4. Scour depth as a function of time (Case 2)          Figure 5. Error in prediction of scour depth (Case 2) 
 
Figure 6 (case 3) shows the plot of the predicted scour-depth with time in a different flume17. This data was chosen to 
show the equilibrium scour depth. In this case, the equilibrium scour depth is achieved after 5500 minutes. Once the 
equilibrium scour depth is achieved, the scour remains almost constant and does not change with the input parameters. 
Figure 6 shows the capability of the algorithm to capture this phenomenon. During the equilibrium phase, the error in 
prediction is less than 2%. 

 
                     Figure 6. Scour depth as a function of time (Case 3)                Figure 7. Error in prediction of scour depth (Case 3) 



 
 
The above three cases were carefully chosen and presented to show the adaptability and robustness of the GP algorithm 
under different conditions. Figure 8 shows the plot of the actual scour versus predicted scour for all the dataset. Out of the 
84 points in the dataset, 27 points, which were chosen from different flumes under different flow conditions, were used 
for prediction. All the predicted points in Figure 8, except two, lie within the +25% error lines. Out the points lying inside 
the +25% error lines, most of them are very close to the centerline, which implies accurate predictions.   

 
 

Figure 8. Actual scour vs. predicted scour using the Gaussian Process algorithm 
 
Table 2 shows that 92.5% of the points are predicted with an error of less than or equal to 20%. Out of these points, which 
had the error in between 10% and 20%, are the points that had the least amount of training data (< 4 training data points). 
A coefficient of determination of 0.9821 was achieved for the training set and a value of 0.9016 was achieved for the test 
data.  
 
     Table 2. Number of points predicted with a certain range of error. 
 

Error (E) (%) Number of points predicted 
E < 5 12 

5 < E < 10 5 
10 < E < 20  8 

E > 20 2 
 
 

5. CONCLUSIONS 
 
A probabilistic Gaussian process based algorithm for predicting the time-dependent scour has been developed. Three 
different scenarios were demonstrated to test the capability of the algorithm. In the first case, the data containing sudden 
increase in scour was considered. The algorithm was able to predict this phenomenon with an error of 8%. In the second 
case, the adaptability of the algorithm with increasing training data is shown. The error in the prediction decreases 



asymptotically as more training data becomes available. In the third case the data was chosen such that the scour has 
reached the equilibrium value where it doesn’t change with the varying input conditions. The GP algorithm was able to 
capture this phenomenon and predicted a constant scour depth during this period. Out of the 84 data points available, 27 
data points were used for testing the algorithm. A coefficient of determination of 0.9821 was achieved for the training 
data and a value of 0.9016 was achieved for the testing set. 
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