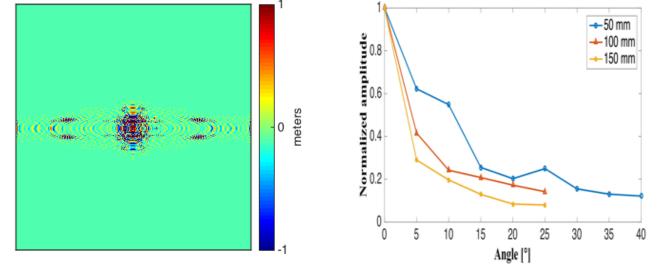
Modeling of Ultrasonic Guided Waves in Metal and Composite **Materials**

Guoyi Li, Rajesh Kumar Neerukatti, Aditi Chattopadhyay

School for Engineering of Matter, Transport and Energy

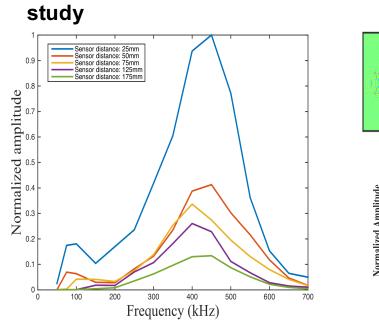
Research Sponsored by Honeywell International, Czech Republic, Technical Monitor: Cenek Sandera

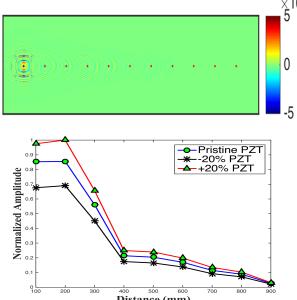

Objectives:

- Study wave propagation behaviour in complex metallic and composite structures
- Evaluate the dispersion curves and attenuation trends for different layups and material properties
- Investigate wave interaction with damages for development of SHM methodology for structural damage detection and quantification

Guided Waves Mode conversion analysis Thickness change caused by damage acts as source of mode conversion **Detecting mode converted** waves -> damage detection **TOF** information of mode converted waves → damage localization 4500 ¹2000 2500 3000 3500 Sensor Lamb waves have ability to travel long distances in plate-like structures

Directional Attenuation in Unidirectional Composites


- S0 mode propagation; Layup: [0°]_{8s}
- Plate dimension: 1000 mm x 1000 mm x 16 mm
- Sensor distance: 50 mm,100 mm and 150 mm
- Angle: 0° 45°
- Propagation time: 100 μs
- Excitation signal: 500 kHz



Signal amplitude decreases with increasing angle

Frequency and PZT Property Dependence on **Attenuation**

- Sensor distance varied between 25 mm and 175 mm for frequency dependence
- Frequency: 50 kHz to 500 kHz. And 500 kHz for PZT properties

Optimum frequency can be selected based on the functional relation with amplitude Increasing PZT properties leads to higher wave amplitude

Matching Pursuit Decomposition (MPD)

Raw signal

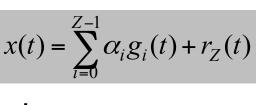
Hilbert transformation

0.01

0.005

-0.005

-0.01

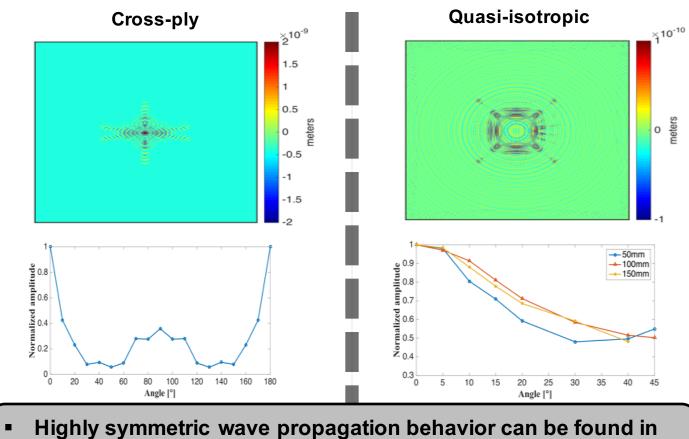

0.015

0.01

0.005

& are sensitive to multiple damage types

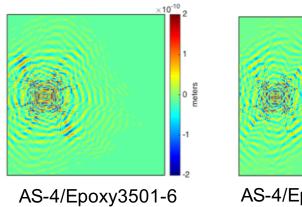
Decomposes signal into weighted linear expansion of elementary basis function (atoms)

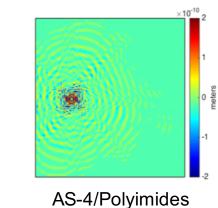


where,

- x(t) input signal α_i – expansion coefficient $g_i(t)$ – basis function
- $r_z(t)$ residual energy after **Z** iterations
- Iterative algorithm sorts decomposition by magnitude of α_i (highest energy)
- **Basis function chosen to resemble** signal and reduce computational complexity
- Number of peaks in Hilbert transform estimates number of modes in signal

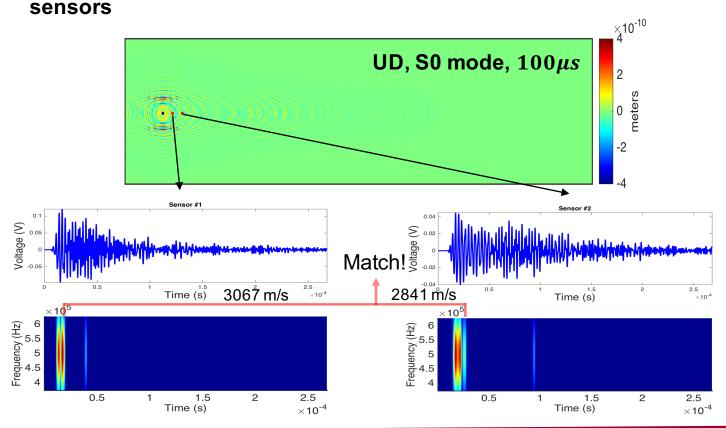
Directional Attenuation in Cross-ply and Quasiisotropic Composites


- S0 mode propagation; Excitation signal: 500 kHz
- Plate dimension: 1000 mm x 1000 mm x 16 mm

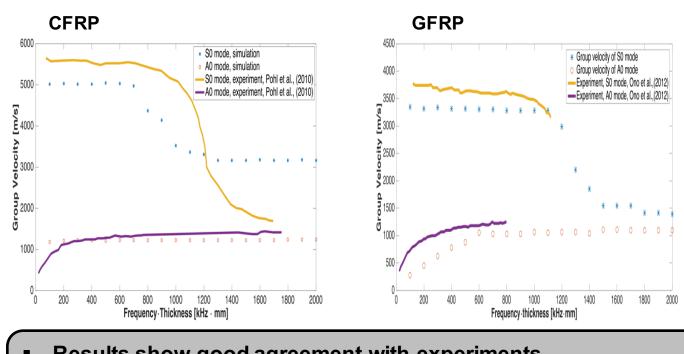

cross-ply composites Amplitude decreases as wave leaves fiber orientations

Composite Material Property Dependence on Attenuation

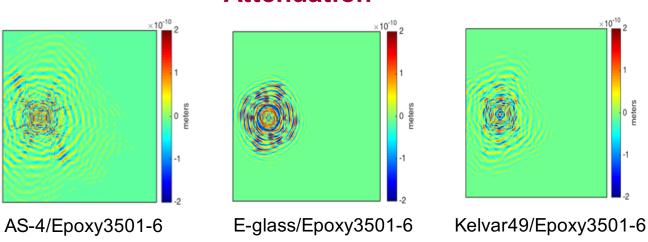
- Layup: [0°/45°/-45°/90°]_{2s}, 400 mm x 400 mm x 16 mm
- Sensor distance varied between 50 mm and 200 mm
- Polymer materials: Epoxy 3501-6, Epoxy HY6010 and polyimides
- Fiber materials: AS-4 carbon fiber, E-glass fiber and Kevlar 49
- Case 1: same fiber (AS-4) with different polymer materials
- Case 2: same polymer (Epoxy 3501-6) with different fiber materials
- Propagation time: $45\mu s$

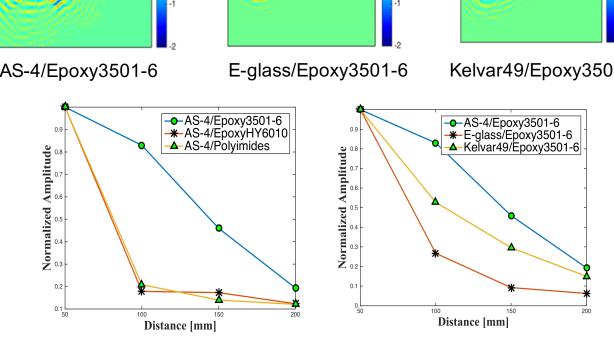

AS-4/EpoxyHY6010

Changing matrix properties do not cause significant change in wave propagation behavior


Time of Flight Analysis Using Supervised Learning Based MPD Algorithm

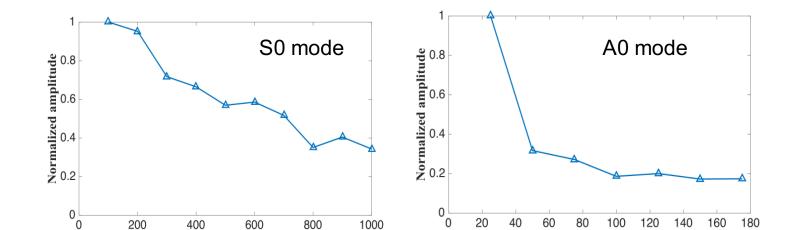
- For signal collected from each sensor, multiple modes found by MPD methodology
- Found the time of arrival (TOA) of each mode
- Calculated the group velocity for each mode
- Expected mode found by comparing the group velocities from all the sensors


Dispersion Curve for Carbon/Glass Fiber Reinforced Polymer Composites


- A0 and S0 modes propagation; Layup: $[(0/90)_f, 45,-45, (0/90)_f]_s$
- Plate dimension: 1300mm x 300 mm x 2 mm
- Sensing distance: 50 mm; Frequency: 50 kHz to 1000 kHz Composite materials: IM6/SCI081 and glass fiber composite
- Results are plotted along with published experiment data

Results show good agreement with experiments The discrepancy of S0 mode in CFRP is due to the different material properties

Composite Material Property Dependence on Attenuation


Changes in fiber property lead to significant change in wave propagation

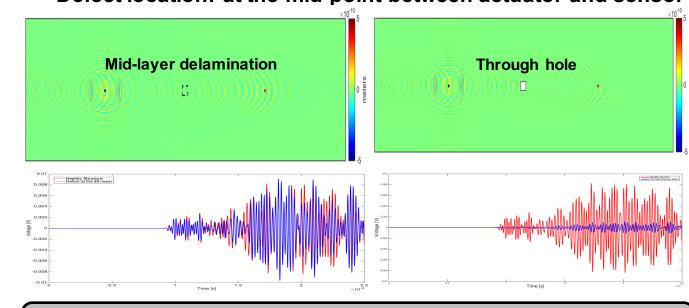
Attenuation in Unidirectional Composites

- Layup: [0]_{8s}
- Collocated actuators are used to generate S0 and A0 modes
- Frequency: 500 kHz
- Plate dimensions: 1200 mm x 300 mm x 16 mm

Actuation signal: 5 cycle cosine tone burst

Distance [mm]

Amplitude decreases with increasing distance away from actuator A0 mode has higher amplitude attenuation than S0 mode


Effect of Stiffness Components on Dispersion Curves

- A0 and S0 modes propagation
- Layup: Quasi-isotropic IM6/SCI081, $[(0/90)_f, 45,-45, (0/90)_f]_s$, and unidirectional AS-4/3501-6 plates, [0°]_{8s}
- Sensing distance: 50 mm; Frequency: 50 kHz to 1000 kHz Small perturbations are introduced in the stiffness components

S0 mode changes significantly because of different material components and layups. A0 is not sensitive to these changes

Interaction With Delamination and Through Hole

- Layup: [0]_{8s}, sensor distance 600 mm
- Plate dimensions: 1200 mm x 300 mm x 16 mm
- Defect dimension: 20 mm x 20 mm
- Defect location: at the mid point between actuator and sensor

Significant change in wave amplitude due to through hole Wave refection due to damage

ADAPTIVE INTELLIGENT MATERIALS & SYSTEMS CENTER