In-situ Sensing of Interface Delamination in IC Packaging

Javaid Ikram, Aditi Chattopadhyay

School for Engineering of Matter, Transport and Energy

Research supported by Intel Corporation, Program Manager: Dr. Gaurang Choksi

Objectives:

- Detect pre-existing thermal interface material failure and sealant delamination in the heat sink region
- Develop stress sensitive CNT & CNF multifunctional membrane for spatial strain monitoring of IC packages
- In-situ sensing of delamination and prognosis modeling

Proposed Approach

- Implement a novel guided wave approach to detect and quantify delamination at the Integrated heat sink interface.
- Enable resolution enhancement over Scanning acoustic microscopy. Enhance resolution by using Matching pursuit decomposition (MPD) and Time Frequency (TF) analysis.

Complex Laminate

Fundamental Study on Guided Waves in IC Packages

- Study propagation of guided waves in Si-TIM-IHS interface.
- Cohesive zone modeling of interfaces by performing fracture tests (Mode 1 and 2).
- Material property characterization under loading conditions.

Problem Statement

- Delamination detection.
- Bond line thickness measurement.
- Interfaces:
 - IHS PTIM / Si-PTIM
 - IHS Sealant / SR-Sealant

Guided Wave and Ultrasonic Testing Apparatus

Inspection of Intel Samples

Objectives:-

- CNT nanocomposites with self ulletsensing capability
- Process development for scalable fabrication of CNT buckypaper

Stress sensitive multifunctional membrane

Bucky paper multifunctional membrane

Embedded Strain Sensing

- Develop CNT integration methods in IC Packages
- CNT nanocomposites with self sensing capability
- Process development for scalable fabrication of CNT buckypaper
- Accurate strain and crack quantification using *in-situ* electrical measurements

Bucky Paper TIM

Better thermal properties than Thermal interface material*.

Product	Thermal impedance (K/W)	Enhancement
Dry contact	0.151	Reference
Aremco 640	0.071	52.98%
Shin-Etsu MicroSi [®] G751	0.098	35.10%
Dow Corning® TC-5121	0.096	36.42%
Omegatherm 201	0.081	46.36%
PowerFilm 51	0.474	-213.91%
Thermal Grease TIC-1000A	0.072	52.32%
HighFlow 565U	0.221	-46.36%
CNF-PS	0.833	-451.66%
CNF-LHT	0.723	-378.81%
	0.000	E 4 000/

*Carbon nanofiber based buckypaper used as a therm interface material. Lafdi Et Al

ADAPTIVE INTELLIGENT MATERIALS & SYSTEMS CENTER