In-situ Sensing of Interface Delamination in IC Packaging

Javaid Ikram, Aditi Chattopadhyay

School for Engineering of Matter, Transport and Energy

Research supported by Intel Corporation, Program Manager: Dr. Gaurang Choksi

Objectives:

- Detect pre-existing thermal interface material failure and sealant delamination in the heat sink region
- Develop stress sensitive CNT & CNF multifunctional membrane for spatial strain monitoring of IC packages
- *In-situ* sensing of delamination and prognosis modeling

Proposed Approach

- Implement a novel guided wave approach to detect and quantify delamination at the Integrated heat sink interface.
- Enable resolution enhancement over Scanning acoustic microscopy.
- Enhance resolution by using Matching pursuit decomposition (MPD) and Time Frequency (TF) analysis.

Problem Statement

- Delamination detection.
- Bond line thickness measurement.
- Interfaces:
 - IHS – PTIM / Si-PTIM
 - IHS – Sealant / SR-Sealant

Complex Laminate

- Study propagation of guided waves in Si-TIM-IHS interface.
- Cohesive zone modeling of interfaces by performing fracture tests (Mode 1 and 2).
- Material property characterization under loading conditions.

Fundamental Study on Guided Waves in IC Packages

Inspection of Intel Samples

Bucky paper multifunctional membrane

Embedded Strain Sensing

- Develop CNT integration methods in IC Packages
- CNT nanocomposites with self sensing capability
- Process development for scalable fabrication of CNT buckypaper
- Accurate strain and crack quantification using *in-situ* electrical measurements

Bucky Paper TIM

- Better thermal properties than Thermal interface material*

Carbon nanofiber based buckypaper used as a thermal interface material. Lafi2 Et Al.

ADAPTIVE INTELLIGENT MATERIALS & SYSTEMS CENTER