Project Objectives

- Advanced non-destructive evaluation (NDE) techniques to accurately & efficiently detect, localize & quantify damage in advanced X-COR composites
- Guided wave based structural health monitoring (SHM) methodologies and advance signal processing techniques for *in situ* damage detection and localization in real-time operation

NDE Experiment Setup

- Four layouts:
 - Layout 1: Pristine
 - Layout 2: Seeded ply delamination only
 - Layout 3: Seeded core separation only
 - Layout 4: Both seeded ply delamination & seeded core separation

- Manufactured in the Boeing facility

NDE - Thermography Inspection

- Core separation size estimation

- Size of delaminations successfully predicted within 1%
- Cannot penetrate foam core sufficiently; need to flip sample
- Inability to interrogate both sides of panel simultaneously
- Inaccuracy in measurement of core separation size

NDE - C-Scan Inspection

- Possible to detect all damage types in a single scan
- Sensitive to damages due to attenuating media (e.g. air, gels)
- Able to quantify both delaminations & foam core separations through thicknesses
- Difficulty remains in detecting top sheet core separations due to anomaly in surface structure
- Time consuming compared to flash thermography

SHM - Guided Wave Modeling

- Determine the excitation frequency & signal type
- Selective actuating method for isolating wave modes
- Finite difference based local interaction approach
- Signal processing using Matching Pursuit Decomposition

SHM Results – Modeling vs. Experiments

- Healthy
- Damage 1
- Damage 2
- Through-thickness View

- Mode conversion due to structural delamination
- Modeling result has a good agreement with experimental results
- Modeling technique effectively reduces the experimental results

SHM - Non-homogenized Model

- Model the pins explicitly without material homogenization
- Investigate the effects of pins on wave propagation

- Additional attenuation introduced due to presence of pins
- Necessary to consider this effect in SHM for X-COR sandwich structures

Guided Wave Based SHM - Experiment Setup

- MFC sensor arrays constructed on the surface
- Each array: 1 actuator & 5 sensors
- Actuating signal: 5-cycle cosine tone burst with frequencies from 10 kHz to 120 kHz
- Delaminations (28 mm x 25 mm) at mid layer of facesheet

Macro Fiber Composite (MFC)

- Consists of rectangular piezoelectric rods sandwiched between layers of adhesive, electrodes and polyyamide film
- Sealed package ensures durability
- Bonded to various structures or embedded in a composite structure
- Dual electromechanical capability: converts Voltage to Strain and vice-versa
- M2814-P2 MFCs used in this study
- Dimensions: 28mm x 14mm
- Advantages:
 - Flexibility
 - Directional actuation
 - Conformability

Damage Localization Schematic

- Difficulties in detecting reflected waves due to high dispersion
- Novel mode tracking based localization method
- Signal de-noising in time-frequency domain
- Damage localization in time-space domain without baseline information (reference free)

Damage Localization Under 70 kHz

- Excitation frequency: 70 kHz

Comparison with Healthy Path

- Time-space representation of healthy path

Repeatability under Various Frequencies

<table>
<thead>
<tr>
<th>Frequency</th>
<th>50 kHz</th>
<th>60 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode 1:</td>
<td>Feature (amplitude, velocity, etc.) successfully identified in time-space representation</td>
<td></td>
</tr>
<tr>
<td>Mode 2:</td>
<td>Actuator and delamination accurately localized</td>
<td></td>
</tr>
</tbody>
</table>

ADAPTIVE INTELLIGENT MATERIALS & SYSTEMS CENTER