Multifunctional Thermoset Polymer Matrix with Self-Sensing and Self-Healing Capabilities

Bonsung Koo, Ryan Gunckel, Aditi Chattopadhyay, and Lenore Dai School for Engineering of Matter, Transport and Energy

Research supported by Army Research Office (ARO) Technical Monitor: Dr. David Stepp and Dr. Julie Fife

Objectives:

- Identification of damage precursors in polymer matrix composite structures
- Synthesis and characterization of mechanophore embedded thermoset polymer (self-sensing/self-healing)
- Development of a novel modeling framework to simulate mechanochemical reaction of mechanophores
- Validation of the modeling framework with experimentally observed responses

Motivation for Research Motivation: Urgent need for novel materials for damage precursor detection in polymer matrix composites **Experiments**

- **Research Outcomes**
- Mechanophoric polymers with damage detection capability
- Simulation framework for mechanochemistry
- Integration of experiments and simulations for materials by design

Mechanophores

Dimeric Anthracene®

"A stress or strain activated molecular unit providing a molecularscale reading of the local mechanical state or to transform materials properties in response to the local mechanical environment."

*Davis et al. Nature (2009). **Chen et al. Nature chemistry (2012) ***Nofen et. al. *Mat. Res. Exp.* (2016)

Dimeric-Anthracene (Di-AC) mechanophore used in thermosets for aerospace applications

Employment of Dimeric Anthracene (Di-AC)-based Mechanophore Polymers* *Nofen et. al. (2016)

Di-AC nanocomposite successfully shows early signal detection capability

Modeling of Di-AC based Mechanophore Thermoset Polymers

- Develop a new method to generate epoxy network (epoxy curing) and simulate mechanophore activation (covalent bond breakage)
- Physics-based modeling approach provides information to mechanophore design enhancement

Quantum Mechanics + Molecular Dynamics => Hybrid MD Simulation Framework

Hybrid MD Simulation Framework

Key elements

- Epoxy network
 - Perform covalent bond generation method
- Covalent bond dissociation
 - Implement bond-order based force field
- Mechanical loading test in MD
 - Develop a quasi-continuum deformation method
- Characterization of Di-AC (mechanophore)
 - Calculate bond dissociation energy

Epoxy Curing Simulation

Epoxy-based thermoset matrix (host) generated

Covalent Bond Dissociation

- Empirical (traditional) bond potential in MD does not simulate bond dissociation
- σ -bond, π -bond, and σ - π -bond must be captured

Need bond-order based force-field => Reactive Force Field (ReaxFF)

Mechanophore Activation using Virtual Loading Test

Covalent bond dissociation successfully simulated

Characterization of Di-AC

Mechanophore Activation Curve

- Proportional increase in intensity as specimen deforms; good correlation between modeling and experiments
- Critical strain values representing the onset of mechanophore
- activation are estimated

Mechanophore activation can represent intensity curve

Early Signal Detection

■ Early signal detection of Di-AC was observed in experiments

Early signal detection is captured computationally through the comparison of stress-strain curve and mechanophore activation

Yield Strength Comparison Neat Epoxy vs. 5 wt% Di-AC

Comparable difference in yield strength between simulations and experiments

Captures experimentally observed responses

ADAPTIVE INTELLIGENT MATERIALS & SYSTEMS CENTER