Atomistically Informed Nano to Macroscale Modeling of Advanced Composites

Ashwin Rai, Aditi Chattopadhyay

School for Engineering of Matter, Transport and Energy

Research supported by Office of Naval Research, Program Manager: Mr. William Nickerson

Objectives:

- Develop stochastic multiscale model for CFRPs and CNT/CFRP structures which utilize nanoscale information
- Investigate nonlinear, multifunctional, and causal effects of damage initiation and propagation in advanced composites
- Utilize low fidelity damage models for macroscale integration and analysis of composite structures

Motivation

Advanced composite structures present many mechanical/multifunctional

Bridging Elastic information

Distribution of Properties

MATERIALS & SYSTEMS CENTER

- benefits
- Nanocomposites with CNTs: Stiff and strong, ideal filler material
- Lack of accurate predictive models for material engineering or structural analysis
- Experimental trial and error is too expensive and time consuming
- Large divide between theory and experiments

Obtained a PDF of elastic constants Comparisons with experiments:

- 0.3% error in mean of E1
- 3.1% error in standard deviation of E1
- 2.3% error in mean of E2
- 10.6% error in standard deviation of E2

Stress Field in Vicinity of Nanofillers

Microstructure Investigations

- Microstructures with 0.1% wf CNT generated
- Tested in transverse direction
- Elastic and damage response was studied

Randomly dispersed configuration shows slightly higher elastic behavior

Low-fidelity Damage Model for Matrix

- Represent matrix response using Schapery potential theory
- Straight forward for isotropic damage since single ISV required
- Orthotropic response requires modified definition of the ISVs
- One ISV for strain in each direction

- ISV as a function of binary parameters activated on existence of strain
 - Elastic constants are a function of ISVs

Response Distribution

- Two sources of variability:
 - Volume fraction
 - Matrix properties
- 1000 simulations, randomly sampled
- Processing time: 30-45 minutes
- Transverse loading tight response, failure strain change
- Shear loading large spread; higher non-linearity for stiff response
- Average response discouraged for design

0 0.005 0.01 0.015 0.02 0.025 ϵ_{23}

Integration to the Macroscale

- Macroscale model integration for structural analysis
- Structural composite bonded joints as case study
 - Limited use due to lack of appropriate analysis methods and damage initiation, progression and failure criteria
 - Introduction of bolts leading to overdesign
 - Unoptimized designs
- Can be used more effectively with comprehensive models to predict damage and failure

Methodology

- Structural Analysis -> FE
- FE integration point > Microstructure representation
- Microstructure Analysis -> MoC Micromechanics
- Matrix -> Low fidelity damage models
- Matrix analysis -> atomistically informed damage model

ADAPTIVE INTELLIGENT MATERIALS & SYSTEMS CENTER