Objectives:
- Develop stochastic multiscale model for CFRPs and CNT/CFRP structures which utilize nanoscale information
- Investigate nonlinear, multifunctional, and causal effects of damage initiation and propagation in advanced composites
- Utilize low fidelity damage models for macroscale integration and analysis of composite structures

Motivation
- Advanced composite structures present many mechanical/multifunctional benefits
- Nanocomposites with CNTs: stiff and strong, ideal filler material
- Lack of accurate predictive models for material engineering or structural analysis
- Experimental trial and error is too expensive and time consuming
- Large divide between theory and experiments

Information Transfer
- Microstructure level modeling
 - Atomistic infromed damage model & vary by crosslinking degree
- Macroscale level modeling
 - Integrating microstructure data into macroscale model

Polymer Damage Model Validation
- Various validation strategies used:
 - Benchmarcking with established models
 - Experimental approaches
 - Comparing local stress fields

Microstructure Investigations
- Microstructures with 0.1% wt CNT generated
 - Tested in transverse direction
 - Elastic and damage response was studied
- Unoptimized designs
- Can be used more effectively with comprehensive models to predict damage and failure

Stress Field in Vicinity of Nanofillers
- Two softening phases observed in MD
- Two softening phases observed in local FE

Response Distribution
- Two sources of variability:
 - Volume fraction
 - Matrix properties
- 1000 simulations, randomly sampled
- Processing time: 30-45 minutes
- Transverse loading – tight response, failure strain change
- Shear loading – large spread; higher non-linearity for stiffer response
- Average response discouraged for design

Integration to the Macroscale
- Macroscale model integration for structural analysis
- Structural composite bonded joints as case study
- Limited use due to lack of appropriate analysis methods and damage initiation, progression and failure criteria
- Introduction of bolts leading to overdesign
- Can be used more effectively with comprehensive models to predict damage and failure

Methodology
- Structural Analysis -> FE
- FE integration point -> Microstructure representation
- Microstructure Analysis -> MoC Micromechanics
- Matrix -> Low fidelity damage models
- Matrix analysis -> atomistically informed damage model

Bridging Elastic Information
- Two-parameter response surface created from MD data
- Polymer CNT/Matrix: Damage evolution law based on the microstructure

Distribution of Properties
- Obtained a PDF of elastic constants
 - Comparisons with experiment:
 - 8.2% error in mean of E1
 - 3.1% error in standard deviation of E1
 - 3.3% error in mean of E2
 - 10.6% error in standard deviation of E2

Low-fidelity Damage Model for Matrix
- Represent matrix response using Schapery potential theory
- Straight forward for isotropic damage since single ISV required
- Orthotropic response requires modified definition of the ISVs
- One ISV for strain in each direction
- ISV as a function of binary parameters activated on existence of strain
- Elastic constants are a function of ISVs

ADAPTIVE INTELLIGENT MATERIALS & SYSTEMS CENTER