Characterization & Testing of Composites for Aerospace Structures

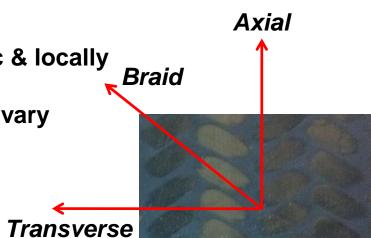
Joel Johnston, Luke Borkowski, Aditi Chattopadhyay

School for Engineering of Matter, Transport & Energy

Research supported by Honeywell Aerospace & AIMS Center Consortium

Objectives:

- Mechanical & environmental testing of triaxially braided composites
- Testing & analysis of adhesively bonded load paths in fan containment structures
- Hybrid & monolithic cruciform biaxial testing of materials under consideration for wing & fuselage applications
- Bolted joint repair bearing failure mechanical testing & post mortem characterization


Triaxial Composite Characterization & Experiment Matrix

Challenges

- Material is globally orthotropic & locally ____Braid anisotropic
- Multiple damage mechanisms vary with load direction
- Complicated specimen design

Experimental Matrix Single & 6 ply coupons tested

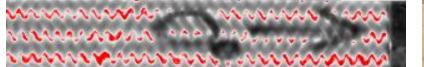
• Uniaxial monotonic, load/unload, & biaxial specimens prepared

Pretesting Methods & Analysis

- EchoTherm flash thermography images taken to visualize any manufacturing related defects before testing
- Speckling required for proper **ARAMIS** strain field detection
- For aged testing, specimens weighed & placed in an environmental chamber at 60°C & 90% RH

Volume Fraction Testing

- Burn-off tests performed using muffler furnace at 475°C
- Specimens remain in furnace until no polymer matrix remains
- Fiber volume fractions determined from mass loss & constituent densities



ADAPTIVE INTELLIGENT **MATERIALS & SYSTEMS CENTER**

Samples are

- Unaged/aged (physical), hot, & hot/wet testing conditions Failure & damage mechanisms
- captured through NDE & traditional methods
- Volume fraction
- In-plane stiffness matrix
- Nonlinear parameters
- Elastic/Inelastic damage
- Ultimate strengths, strain to failure

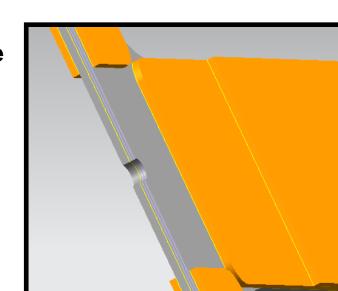
Characterization Parameters

EchoThermo flash thermography image

56% Volume Fraction +/- 3%

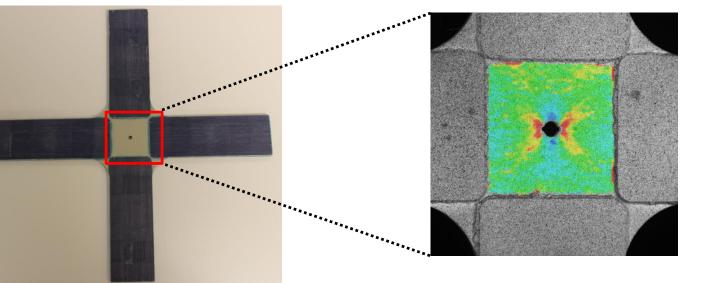
Before

After


Hybrid Composite Overview

Challenges

- Characterization & comparison of hybrid fiber metal laminates
- Composite & metal failure modes in the same material


Matrix

- Open-holed cruciform monolithic & hybrid composite specimens
- Design includes GLARE strap & variable fiber lamina orientations
- Fatigue & static testing for S/N curve & material properties
- Develop a failure model for implementation into commercial FEM software

Hybrid Composite Testing **Experimental**

- Perform fatigue & static biaxial tensile testing of hybrid composites
- Optically track crack growth & failure progression during testing
- Use ARAMIS & acoustic emission systems to measure 3D strain field & detect/characterize damage events

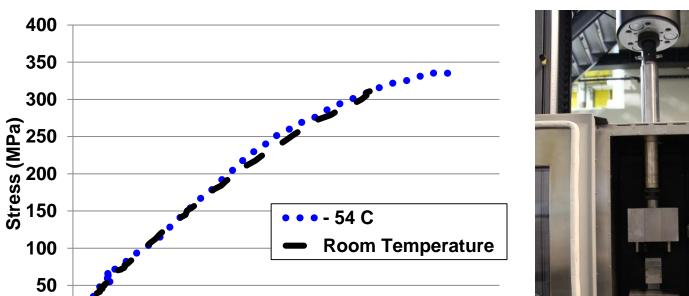
ARAMIS – Digital Image Correlation

- 80 μstrain resolution
- 1 mm x 1 mm field of view
- Similar sized dots for consistent camera settings & calibration

Non-contact full field strain measurement system **Operational through thermal chamber window**

Acoustic Emission

- Useful for determining initiation & progression of matrix cracking & fiber breakage
- Sensor placement in the gage section
- High temperature sensors for thermal/mechanical testing



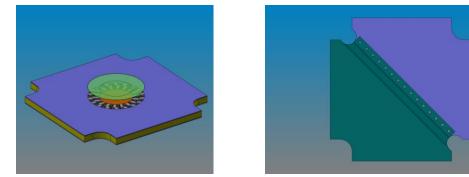
Environmental Chamber Aging

- Material performance & behavior dependent on current
- increase ductility
- Low temperatures increase stiffness & strength but reduce ductility
- Understanding true material behavior increase reliability, lowers weight, & increases efficiency

Instron Frame with Environmental Chamber

- temperature/humidity as well as past loading cycles
- High temperatures & moisture degrade stiffness & strength but

- Temperature Range: -65°C to 200°C
- Humidity Range: 0% to 95% RH


Comparison of the axial compressive response at cold temperatures & room temperature

Composite Testing for Bolted Joint & Sandwich Panel Repair Analysis Tools Objectives

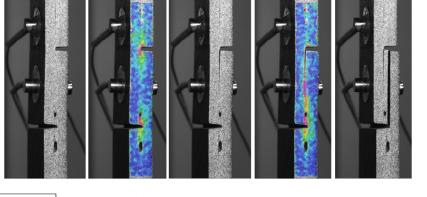
- Multi-modal data acquisition strategy for progressive failure analysis
- Calibration, validation, & uncertainty quantification of analysis models

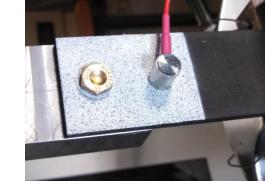
Key Tasks

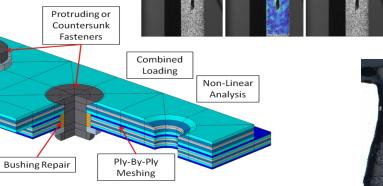
- Design biaxial test specimens for bolted joint & sandwich repair failure analyses
- Develop multi-modal data acquisition methodology to track degradation, damage, & failure progression during testing

Challenges

- Digital signal processing & synergistic combination of modalities
- Generating desired degradation, damage, & failure modes in tests


Solutions


 Develop solid mechanics thermodynamic representation of each type of specimen


Analysis & Test

In Situ Strain Field Measurement & Post Mortem **Failure Characterization**

- ARAMIS digital image correlation & acoustic emission systems used to quantify strain & damage progression during loading sceneries
- Optical microscopy provides post mortem failure & damage information

0

ADAPTIVE INTELLIGENT MATERIALS & SYSTEMS CENTER

Multi-Bod

Contact

Fastener Pre-Load

J-Integral Mode I, II, and III SIFs